Linear Functionals Part I

 Let us look at linear functionals briefly, these are the foundation of frame theory...

DEFINITION: Let V be a finite-dimensional vector space. A linear functional is linear transformation ϕ:VF, that is a scalar-valued function that takes as input a vector.

Now let us take a look at the Riesz Representation Theorem, this will require some preliminaries...

First, let A=[aij] be an m×n matrix over the field F, the ADJOINT matrix A of A is the matrix B=[bij]Fn×m such that bij=aji   i,jN. Simply put, the adjoint is the conjugate transpose of the matrix...

PROPOSITION Let A,B be two matrices over the field F, and let α,βF. Assume that A,BFm×n, that is the same sizes. Then we have the following properties...

i) (αA+βB)=aA+bB

ii) (A)=A

iii) (AB)=BA

iv) (A1)=(A)1

PROOF: Let us go step by step here

i) (αA+βB)=(α[aij]+β[bij])=([αaij]+[βbij])=[αaij+βbij]=[cij]=[cji]=[αaji+βbji]

=[αaji+βbji]=[αaji]+[βbji]=α[aji]+β[bji]=αA+βB   

ii) (A)=([aij])=([aji])=[cij]=[cji]=[aij]=[aij]=A   

iii) This one needs careful attention AFm×n,BFn×p...

AB=(a1:a2:am:)(b:1b:2b:p)=(a1:,b:1a1:,b:2a1:,b:pa2:,b:1a2:,b:2a2:,b:pam:,b:1am:,b:2am:,b:p)

let

AB=[ai:,b:j]i,j=1m,p(AB)=[ai:,b:j]=[cij]=[cji]=[b:j,ai:]=[b:j,ai:]

then

=(b:1,a1:b:1,a2:b:1,am:b:2,a1:b:2,a2:b:2,am:b:p,a1:b:p,a2:b:p,am:)=(b:1Tb:2Tb:pT)[p×n](a1:Ta2:Tam:T)[n×m]=BA   

iv) This one is easy, we use iii) to help, assume invertibility...

AA1=I(AA1)=I=IA(A1)=I(A)1A(A1)=(A)1I(A1)=(A)1   

Comments

Popular posts from this blog

First blog entry

The definition of a finite frame and putting equations in blogger

Linear Functionals Part II